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INTRODUCTION

This paper summarizes some of the techniques used in constructing C ° and C 1 continuous

meshes of low degree, implicitly defined, algebraic surface patches in three dimensional real space

]Ra. These meshes of low degree algebraic surface patches are used to construct accurate computer

models of physical objects. These meshes are also utilized in the finite element simulation of

physical phenomena (e.g. heat dissipation, stress/strain distributions, fluid, flow characteristics,

etc.) required in the computer prototyping of both the manufacturability and functionality of the

geometric design.

Why use algebraic surfaces ? A real algebraic surface S in IR.a is implicitly defined by a single

polynomial equation f" : f(x, y, z) = 0, where coefficients of f are over the real numbers IR.. Manip-

ulating polynomials, as opposed to arbitrary analytic functions, is computationally more efficient.

Furthermore algebraic surfaces provide enough generality to accurately model most complicated

rigid objects.

Why use implicit representations ? While all real algebraic surfaces have an implicit definition

only a small subset of these real surfaces can also be defined parametrically by the triple

_(s,t) : (x = G,(.s,t),y = Gz(s,t),z = Ga(s,t)) where each G,, i = 1,2,3, is a rational func-

tion (ratio of polynomials) in s and t over IR. The primary advantage of the implicit definition

is the closure properties of the class of algebraic surfaces under modeling operations such as

intersection, convolution, offset, blending, etc. The strictly smaller class of parametrically defined

algcbraic surfaces G(s,t) are not closed under any of the operations listed before. Closure under

modeling operations allows cascading repetitions without any need of approximation. Furthermore,

designing with a larger class of surfaces leads to better possibilities of being able to satisfy the same

geometric design constraints with much lower degree algebraic surfaces. The implicit representa-

tion of algebraic surfaces also naturally yields sign-invariant regions .F + : f(x, y, z) >_ 0 and Y- •

f(x,y, z) < 0, a fact quite useful for intersection and offset modeling operations. One aim of this

paper is to exhibit that implicitly defined algebraic surfaces are very appropriate for constructing

curved finite element meshes.
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C O PLANAR MESHES ON RATIONAL PARAMETRIC SURFACES

It would seem that rational parametric surfaces are easy to mesh since it is trivial to generate

points on a parametric surface. However in constructing a planar finite element mesh on the entire

surface, two difficulties arise:

1. To mesh the entire surface one must allow the parameters to somehow range over the entire

parametric domain, which is infinite. Any bounded portion of the parametric domain leaves
a hole in the surface.

2. Even when restricting the surface to a bounded part of the parametric domain, the rational

functions describing the surface may have poles over that domain, where the surface will

become discontinous. If a surface is discontinuous, an arbitrary triangulation of the parametric

domain will usually result in an incorrect triangulation of the the parametric surface.

In [13]*we give solutions to the above problems for the C Omeshing of rational parametric curves,

surfaces and hypersurfaces of any dimension [8]. The technique is based on homogeneous linear

(projective) reparameterizations and yields a complete and accurate C o planar mesh of free-form,

discontinuous rational parametric domains. For the CARTAN surface example, a single reparame-

terization Ix = s • t, y = s 2, z = t] removes the pole t = 0 of the original parameterization.

s 2

Figure 1: A finite element mesh on the CARTAN umbrella surface [x = s,y = #,z = t]

*This paper contains references 1-37.
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C o PLANAR MESHES ON RATIONAL PARAMETRIC SURFACES, (Contd.)

For the STEINER surface example, four different projective reparameterizations yield a com-

plete covering of the rational parametric surface. In [13] for surfaces, four reparameterizations

always suffice. In general 2a projective reparameterizations suffice for a d dimensional parametric

hypersurface. The algorithms which compute these reparameterizations as well as generate the

C O planar meshes have been implemented in C in our GANITH toolkit[12]. The pictures have been

generated using this toolkit.

Figure 2: A finite element mesh on the STEINER surface [x - l+s_+t_2"s*t,y _ 1+_+t_2"_,z - l+_-T_+t2J2*t1
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C O PLANAR MESHES ON IMPLICIT ALGEBRAIC SURFACES

One way to mesh implicitly defined rational algebraic surfaces of low degree is to symbolically

compute global rational parametric equations of the surface [1, 2, 8] and then use the meshing

methods of the previous section. Direct schemes which work for arbitrary implicit algebraic sur-

faces are based on either the regular subdivision of the cube [16] or a finite subdivision of an

enclosing tetrahedron [29]. The quartic surface example below was meshed in GANITH [12] by a

implementation based on the methods of [16, 29].

ii!iiiiiiiiili iiii ¸

Figure 3: A finite element mesh of an implicitly defined quartic surface
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C o PLANAR MESHES ON IMPLICIT ALGEBRAIC SURFACE PATCHES, (Contd.)

The implicitly defined triangular quintic surface patch example below was meshed in GANITH

[12] by an implementation based on a space curve tracing method reported in [10]. In this method,

various curves joining the boundary of the triangular patch are adaptively traced to yield a mesh

of triangles which accurately C o approximate the triangular surface region.

Figure 4: A finite element mesh of implicit triangular quintic patches used in C _ smoothing poly-

hedra.
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BOUNDED ASPECT RATIO TRIANGULATIONS IN THREE DIMENSIONS

Though a number of algorithms exist for triangulating a point set or a polyhedron in two and

three dimensions [17, 23, 31], few address the problem of guaranteeing the shape of the triangular

elements. To reduce ill-conditioning as well as discretization error, finite element methods require

triangular meshes of bounded aspect ratio [5, 25]. By aspect ratio of triangles or tetrahedra, one

may consider the ratio of the radii of the circumscribing circle to that of inscribing circle (spheres

in case of tetrahedra).In 2D, two distinct approaches are known to produce guaranteed quality

triangulations. The first approach, based on Constrained Delaunay Triangulations, was suggested

by Chew [18]. He guarantees that all triangles produced in the final triangulation have angles

between 30 ° and 120 °. The other approach based on Grid Overlayin 9 was used by Baker, Grosse,

and Raferty in [14] to produce a non-obtuse triangulation of a planar polygon. Recently, [15], Bern,

Eppstein, and Gilbert give algorithms for producing guaranteed quality triangulations. They use a

regular subdivision of a square, i.e. a quadtree.

In [21] an algorithm is presented to generate good triangulations of the convex hull of a point

set in three dimensions. New points are added to generate good tetrahedra with the restriction

that all points are added only inside or on the boundary of the convex hull. Good triangulations of

convex polyhedra are a special case of this problem. A robust implementation of this 3D triangulation

algorithm, in the presence of numerical errors under finite precision arithmetic [22], has been made

in our SHILP toolkit [4]. Below is one example of this implementation in SHILP.

Figure 5: A finite element mesh on the surface of a dodecahedron



FINITE ELEMENT SOLID MODEL RECONSTRUCTION FROM CT/MRI
MEDICAL IMAGING DATA

Skeletal model reconstruction from voxel data has been an active research area for many years.

There are primarily two classes of model reconstruction techniques. One class of methods first

constructs planar contours in each CT/NMR data slice and then connects these contours by a

triangulation in three dimensional space. The triangulation process is complicated by the occurrence

of multiple contours on a data slice (i.e. branching). Early contributions here are by Keppel [32],

Fuchs, Kedem and Uselton [26]. The other class of methods uses a hierarchical subdivision of the

voxel space to localize the triangular approximation to small cubes [33]. This method takes care of

branching; however the local planar approximation based on the density values at the corner of the

subcube may sometimes be ambiguous. An extension of this scheme which computes a C 1 piecewise

quadratic approximation to the data within subcubes is given in [34].

In [9] we present an algorithm belonging to each of the above classes to construct Cl-smooth

models of skeletal structures from CT/NMR voxel data. The boundary of the reconstructed models

consists of a C I -continuous mesh of triangular algebraic surface patches. The first algorithm starts by

constructing Cl-continuous piecewise conic contours on each of the CT/NMR data slices and then

uses piecewise triangular algebraic surface patches to C 1 interpolate the contours on adjacent slices.

The other algorithm works directly in voxel space and replaces an initial C o triangular facet

approximation of the model with a highly compressed CX-continuous mesh of triangular algebraic

surface patches. Both schemes are adaptive, yielding a higher density of patches in regions of higher

curvature. These algorithms have been implemented in our VAIDAK toolkit [6]. An example of

this reconstruction scheme from MRI data is shown below.

Figure 6: A finite element mesh around the ear of a human head
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C 1 CURVED FINITE ELEMENT MESHES OVER TRIANGULATED DOMAINS

The generation of a C 1 mesh of smooth surface patches or splines that interpolate or approximate

triangulated space data is one of the central topics of geometric design. Chui [19] summarizes

much of the history of previous work. Prior work on splines has traditionally worked with a

given planar triangulation using a polynomial function basis. More recently surface fitting has

been considered over closed triangulation in three dimensions using a parametric surface for each

triangular face [24, 27, 28, 30, 35].

Little work has been done on spline basis for implicitly defined algebraic surfaces. Sederberg [36]

shows how various smooth implicit algebraic surfaces can be manipulated as functions in Bezier

control tetrahedra with finite weights. Dahmen [20] presents the construction of tangent plane

continuous, piecewise quadric surfaces The technique however works only if the original triangulation

of the data set allows a transversal system of planes and hence is restricted. Warren [37] computes

low degree blending and joining implicit surfaces by using the products of surfaces defining the

blending and joining curves. Bajaj and Ihm [11] show how blending and joining algebraic surfaces

can be computed via C 1 interpolation. In [10] we consider an arbitrary spatial triangulation T

consisting of vertices (xi,yi, zi) in ]R 3 (or more generally a simplicial polyhedron P when the

triangulation is closed), with possibly "normal" vectors at the vertex points. An algorithm is

given to construct a C 1 continuous mesh of low degree real algebraic surface patches Si , which

respects the topology of the triangulation 7" or simplicial polyhedron 7:', and C 1 interpolates all the

vertices (xj, yj, zj) in IR 3. The technique is completely general and uses a single implicit surface

patch for each triangular face of 7" of 7_, i.e. no local splitting of triangular faces. Each triangular

surface patch has local degrees of freedom which are used to provide local shape control. This is

achieved by use of weighted least squares approximation from points (xk, Yk, zk) generated locally

for each triangular patch from the original patch data points and normal directions on them. These

algorithms have been implemented in C in our SHILP toolkit [4]. An example is shown below.

Figure 7: A C 1 curved finite element mesh over a closed spatial triangulation
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